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Abstract. We survey results and techniques in the topological
study of simplicial complexes of (di-, multi-, hyper-)graphs whose
node degrees are bounded from above. These complexes have
arisen is a variety of contexts in the literature. The most well-
known examples are the matching complex and the chessboard
complex. The topics covered here include computation of Betti
numbers, representations of the symmetric group on rational ho-
mology, torsion in integral homology, homotopy properties, and
connections with other fields.
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1. Introduction

To every finite collection of (di-, multi-, hyper-)graphs that is closed
under removal of edges, one can associate an abstract simplicial com-
plex whose faces are the edge sets of the graphs in the collection. Graph
complexes have provided an important link between combinatorics and
algebra, topology and geometry; see eg., [29, 11, 47, 54, 2, 48, 37]. Here
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we consider the simplicial complexes associated with the collection of
subgraphs of a (di-, multi-, hyper-)graph G whose node degrees are
bounded from above. Some special cases which have arisen in various
contexts in the recent literature are the matching complex (G is the
complete graph and degree bounds are 1) and the chessboard complex
(G is the complete bipartite graph and the degree bounds are 1).

The matching complex Mn is defined to be the simplicial complex
of graphs on node set [n] := {1, 2, . . . , n} such that each node is con-
tained in at most one edge. A piece of M7 (taken from [11]) is given
in Figure 1.1 below. Here and throughout the paper, the vertex of Mn

labeled ij represents the edge {i, j} of the complete graph. The chess-
board complex Mm,n is defined to be the simplicial complex of bipartite
graphs on partitioned node set [m] ] [n]′, where [n]′ = {1′, 2′, . . . , n′},
such that each node is contained in at most one edge. Each (p−1)-face
of the chessboard complex corresponds to a placement of p nontaking
rooks on an m× n chessboard. Indeed, a rook in the ith row and jth
column corresponds to the edge {i, j′} in the bipartite graph, which
corresponds to the vertex (i, j) in Mm,n. It is for this reason that the
name “chessboard complex” is used.
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Figure 1.1: Piece of matching complex M7
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The symmetric group Sn acts naturally on the matching complexMn

by relabeling the graph nodes. For example, the transposition (3, 5)
sends the face {12, 34, 56} to {12, 45, 36}. This induces a representation
of Sn on the reduced simplicial homology H̃p(Mn; k), where throughout
this paper k is a field of characteristic 0. The direct product Sm×Sn

acts similarly on the chessboard complex Mm,n by relabeling the graph
nodes in [m] and [n]′, and this induces a representation of Sm×Sn on
H̃p(Mm,n; k).

In this paper we survey results and techniques in the topological
study of bounded degree (di-, multi-, hyper-)graph complexes. We
discuss the earliest results in this area, dating back to the ′70’s, as
well as the most recent developments. Many of these results are quite
elegant and their proofs make use of powerful combinatorial techniques
for computing homotopy type, homology and representations of the
symmetric group on homology. Some of these techniques are brand
new and some are classical. Because of the many contexts in which the
bounded degree graph complexes have arisen in the literature, a few of
the results have been discovered more than once. We attempt to sort
out what’s been done and to discuss the various mathematical contexts
in which the graph complexes have arisen. Most of the sections end
with a discussion of open problems.

We now give a more detailed description of the content of this paper.
In Section 2, we discuss the contexts in which the bounded degree graph
complexes have appeared in the literature of fields such as group the-
ory, computational geometry, commutative algebra and combinatorics.
The next three sections deal only with the matching and chessboard
complexes and the last three sections deal with generalizations. Nearly
all the results and conjectures for the matching complex (and its gen-
eralizations) have chessboard complex analogues and vice versa.

Section 3 contains a beautiful result of Bouc [11] which gives the
decomposition of the representation of the symmetric group on the
homology of the matching complex into irreducibles. There is an anal-
ogous result of Friedman and Hanlon [24] for the chessboard complex.
These results are of fundamental importance throughout this paper.
Not only do they provide combinatorial formulas for the Betti num-
bers of the complexes, they are even involved in the computation of
torsion in integral homology. The Friedman-Hanlon proof involves an
elegant application of discrete Hodge theory. It is shown by Dong and
Wachs [21] that an even simpler demonstration of discrete Hodge the-
ory can be given for the matching complex. We describe the discrete
Hodge theory technique in Section 3 and sketch the Dong-Wachs and
Friedman-Hanlon proofs which also involve symmetric function theory.
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In Section 4, it is observed that the Hopf trace formula for the match-
ing complex provides a representation theoretic interpretation of a clas-
sical symmetric function identity of Littlewood. A chessboard complex
analogue of the Littlewood identity is derived from the Hopf trace for-
mula for the chessboard complex.

In Section 5 we present results of Bouc [11] and of Björner, Lovász,

Vrećica and Z̆ivaljević [6] giving bounds on connectivity for the match-
ing and chessboard complex. It was conjectured by Björner, Lovász,
Vrećica and Z̆ivaljević and proved by combined work of Bouc [11]
and Shareshian and Wachs [40] that these bounds are sharp. The
proof is discussed in Section 6. Shellability results, conjectured by
Björner, Lovász, Vrećica and Z̆ivaljević and proved by Ziegler [53] and
by Shareshian and Wachs [40], are also included in Section 5.

Section 6 contains results and conjectures on torsion in the bot-
tom nonvanishing integral homology of the matching and chessboard
complexes. The first torsion results for the matching complex were
obtained by Bouc [11] and were recently improved by Shareshian and
Wachs [40]. Analogous results for the chessboard complex were also ob-
tained by Shareshian and Wachs. One interesting aspect of the proof
is the use of the Robinson-Schensted algorithm in constructing a basis
for the top homology of the chessboard complex.

In Section 7, we present Reiner and Roberts’ [37] generalizations of
the decomposition results of Section 3 to general bounded degree graph
complexes. Rather than describe the original proofs, we describe sim-
pler and more elementary proofs due to Karaguezian, Reiner and Wachs
[31] which use GLn(k) representation theory to lift the decompositions
of Bouc and of Friedman and Hanlon to general bounded degree graph
complexes. This lifting technique is also applied to bounded degree
digraph and multigraph complexes in Section 8 and to bounded degree
hypergraph complexes in Section 9. Results of Dong [19] on homo-
topy, predicted by the homology results of Reiner and Roberts, are
also described in Section 7.

Digraph and multigraph versions of the results in the previous sec-
tions, due to Wachs [51], are presented in Section 8. The digraph
and multigraph versions of the matching and chessboard complexes
are viewed as “inflations” of the matching and chessboard complexes,
respectively. The main tool here is a general result of Björner, Wachs
and Welker [7] which expresses the homotopy type of the inflation of
a simplicial complex in terms of the homotopy types of the links of
the simplicial complex. Homology and equivariant homology versions
of the inflation result are also used. The equivariant homology version
also yields Bn-analogues of the decomposition results of Section 3.
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Section 9 deals with bounded degree hypergraph complexes. Very
few of the results of the previous sections have been generalized to
hypergraph complexes. We discuss results of Björner, Lovász, Vrećica
and Z̆ivaljević [6] on connectivity, results of Ksontini on connectivity
and on the top nonvanishing homology, and results of Shareshian and
Wachs [41] on the top nonvanishing homology.

2. History and connections

In this section we give an overview of some of the ways in which
the matching complex, the chessboard complex and general bounded
degree graph complexes have arisen in the literature of various fields of
mathematics.

The matching complex first appeared in a 1992 paper of Bouc [11] in
connection with Brown complexes and Quillen complexes. Let Sp(G)
be the poset of nontrivial p-subgroups of a finite group G ordered by
inclusion. Brown [14], [15] and Quillen [36] were interested in topologi-
cal properties of the simplicial complex ∆(Sp(G)), where ∆(P ) denotes
the order complex of a poset P , i.e., the simplicial complex of chains
of P . Quillen showed that ∆(Sp(G)) is contractible if G has a non-
trivial normal p-subgroup, and conjectured the converse. He reduced
the problem to that of studying the elementary abelian p-subgroups
by showing that the inclusion map from the subposet Ap(G) of non-
trivial elementary abelian p-subgroups of G to Sp(G) induces a homo-
topy equivalence between ∆(Ap(G)) and ∆(Sp(G)). The complexes
∆(Sp(G)) and ∆(Ap(G)) are known as the Brown complex and the
Quillen complex, respectively.

Even for G = Sn and p = 2, not much is known about the homol-
ogy of ∆(Ap(G)) and ∆(Sp(G)). Bouc considered the subposet Tn of
S2(Sn) consisting of the 2-subgroups of Sn that contain a transposi-
tion, and the subposet An of A2(Sn) consisting of nontrivial abelian
subgroups generated by transpositions. He observed that the inclu-
sion map from An to Tn induces a homotopy equivalence between the
order complexes. Since An can be described combinatorially as the
poset of nonempty faces of the matching complex Mn, it follows that
∆(Tn) and ∆(An) have the same homotopy type as Mn. The sym-
metric group Sn acts on elements of Tn and An by conjugation. The
homotopy equivalences between Mn, ∆(Tn) and ∆(An) are equivariant
under this action.

Bouc obtained a number of interesting results on the homology of the
matching complex which are discussed in Sections 3 and 6. One partic-
ularly beautiful result is a decomposition of the representation of Sn
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on the homology of Mn into irreducibles. This yields a combinatorial
formula for the Betti numbers of Mn.

The usefulness of the matching complex Mn in understanding the
topology of the Quillen complex ∆(S2(Sn)) was recently demonstrated
by Ksontini. He used simple connectivity of the matching complex Mn

for n ≥ 8, which was proved by Bouc, to establish simple connectivity
of ∆(S2(Sn)) for n ≥ 8. It was also recently shown by Ksontini [33],
Shareshian [38], and Shareshian and Wachs [41] that a hypergraph
version of the matching complex discussed in Section 9 is very useful
in studying the Quillen complex ∆(Sp(Sn)) when p ≥ 3.

The matching complex also appeared in a 1999 paper of Babson,
Björner, Linusson, Shareshian and Welker [2] on the graph complex
consisting of graphs on node set [n] which are not k-connected. A
graph is said to be k-connected if removal of any j nodes, where j =
0, 1, . . . , k−1, results in a connected graph. When k = 1, 2, the complex
arises in connection with Vassiliev knot invariants [47, 48]. It was
observed in [2] that when k = n−3, the not k-connected graph complex
is the Alexander dual of the matching complex Mn.

Homology of restricted block size partition posets is a subject of
considerable interest in the combinatorics literature (see eg. [18, 49, 9,
8, 46, 44, 50, 12, 13, 45]) and the matching complex and hypergraph
matching complex provide interesting examples of such posets. Indeed,
the poset of faces of Mn is isomorphic to the poset Π2

n of partitions of [n]
in which each block has size at most 2, cf. [45]. Hence the barycentric
subdivision of Mn is isomorphic to the order complex ∆(Π2

n \ {0̂}) and
the representation of Sn on the homology of Mn is isomorphic to the
representation of Sn on the homology of ∆(Π2

n \ {0̂}).
Prior to Bouc’s study of the matching complex, the chessboard com-

plex was first introduced in the 1979 thesis of Garst [26] dealing with
Tits coset complexes. Given a group G and a family of subgroups
G1, . . . , Gm, the Tits coset complex ∆(G;G1, . . . , Gm) is defined to
be the simplicial complex whose vertices are the cosets of the sub-
groups and whose facets have the form {gG1, . . . , gGm}, where g ∈ G.
The group G acts on ∆(G;G1, . . . , Gm) by left multiplication. Coxeter
complexes and Tits buildings are well-known examples of Tits coset
complexes. By letting G = Sn and Gi = {σ ∈ Sn | σ(i) = i},
i = 1, . . . ,m ≤ n, Garst obtained the chessboard complex

Mm,n = ∆(G;G1, . . . , Gm),

with Sn acting on Mm,n. Garst also introduced “colored chessboard
complexes” as examples of Tits coset complexes, cf., Section 8. A
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closely related class of Coxeter-like complexes, which includes the chess-
board complex and the colored chessboard complex, was recently in-
troduced and studied by Babson and Reiner [3].

Garst showed that Mm,n is Cohen-Macaulay if and only if 2m−1 ≤ n.
Ziegler [53] strengthened this result by showing that Mm,n is shellable
if 2m− 1 ≤ n. Consequently, Mm,n has the homotopy type of a wedge
of (m−1)-spheres when 2m−1 ≤ n. The number of spheres can be de-
termined from Garst’s computation of the representation of Sn on the
top homology of Mm,n for all m ≤ n. This computation is a precursor
of Friedman and Hanlon’s [24] decomposition of the representation of
Sm ×Sn on each homology of Mm,n into irreducibles (Theroem 3.2).

The chessboard complex also appeared in a 1992 paper of Z̆ivaljević
and Vrécica [54] in connection with some problems in computational
geometry. One of these problems can be described as follows. Let
S ⊆ Rd be an n-element set with all points in general position. An
affine hyperplane H is called a halving hyperplane of S if H is the
affine hull of a d element subset of S and H divides S into subsets of
equal cardinality. Let h(S) be the number of halving hyperplanes of
S and let hd(n) := max{h(S) | S ⊆ Rd, |S| = n, S in general position}.
The problem is to find bounds on hd(n). In the approach of Z̆ivaljević
and Vrécica, a key role is played by connectivity properties of cer-
tain configuration spaces which are naturally associated with the so
called “colored Tverberg problem”. Such a configuration space can be
described as the r-fold deleted join of the simplicial complex of par-
tial functions in [s] × [t]; i.e., the simplicial complex of all sequences
(f1, . . . , fr) of partial functions in [s]× [t] such that if fi(a) = fj(a) for
some a ∈ [s] then i = j. This simplicial complex is observed to be the
s-fold join of the r × t chessboard complex. Since the connectivity of
a join can be determined from the connectivity of its components, the
connectivity of the chessboard complex determines the connectivity of
the configuration space.

Motivated by the configuration space problem, Björner, Lovász, Vrécica
and Z̆ivaljević [6] gave a bound on connectivity of the chessboard
complex (and matching complex) and conjectured that their bound
is sharp. This conjecture was settled by Shareshian and Wachs [40].
Details of these connectivity results are given in Section 5 and hyper-
graph versions are given in Section 9.

The study of general bounded degree graph complexes of complete
graphs and complete bipartite graphs was initiated in a 2000 paper of
Reiner and Roberts [37]. These complexes are interpreted as simplicial
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complexes derived from certain modules over Veronese and Segre alge-
bras, respectively. This connection with Veronese and Segre algebras
enabled Reiner and Roberts to use techniques from commutative alge-
bra to compute the homology of the bounded degree graph complexes,
generalizing the decompositions of Bouc and of Friedman and Hanlon.
Details of these generalizations are presented in Section 7.

We describe the connection with the Veronese algebras given in [37]
here. The connection with Segre algebras is analogous. In this dis-
cussion k can be a field of arbitrary characteristic. Let S be a sub-
algebra of a polynomial algebra k[x1, . . . , xn] generated by monomials
m1, . . . ,mN , where this generating set is assumed to be minimal. Let
M be a submodule of the S-module k[x1, . . . , xn] generated by a finite
set of monomials. Given γ ∈ Nn such that xγ := xγ1

1 . . . xγnn ∈M , define
a simplicial complex on vertex set [N ] by

Kγ(M) := {F ⊆ [N ] | xγ∏
i∈F mi

∈M}.

This construction also appears in [16] where the simplicial complex
Kγ(M) is called a squarefree divisor complex.

The squarefree divisor complex is interesting because of its connec-
tion with minimal free resolutions. The surjection fromA := k[z1, . . . , zN ]
onto S given by zi 7→ mi, allows one to view M as a finitely generated
A-module. By assigning the (multi-)degree of the monomial mi to zi,
A becomes an Nn-graded algebra and M an Nn-graded A-module. This
Nn-grading is also carried by TorAi (M,k). Let TorAi (M,k)γ denote the
γth-graded piece of TorAi (M,k). The key result here is that

H̃i−1(Kγ(M); k) ∼= TorAi (M,k)γ.

The Veronese subalgebra Ver(n, r, 0) is defined to be the subalgebra
of k[x1, . . . , xn] generated by all monomials of degree r. Reiner and
Roberts [37] define Ver(n, r, j), for j = 0, . . . , r− 1, to be the submod-
ule of the Ver(n, r, 0)-module k[x1, . . . , xn] generated by monomials of
degree j. It is observed in [37] that for r = 2, γ = 1n and j ≡ n mod 2,
the squarefree divisor complex Kγ(Ver(n, r, j)) is isomorphic to the
matching complex Mn. For general γ ∈ Nn, r = 2 and j ≡ |γ| mod 2,
where |γ| is the sum of the entries of γ, the squarefree divisor complex
Kγ(Ver(n, r, j)) is isomorphic to the bounded degree graph complex ∆γ

defined in Section 7. For general γ ∈ Nn, general r and j ≡ |γ| mod r,
we have Kγ(Ver(n, r, j)) is isomorphic to the bounded degree hyper-
graph complex ∆r,γ defined in Section 9.

The bounded degree graph complexes are also related to the free
two-step nilpotent complex Lie algebra whose homology was computed
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first by Józefiak and Weyman [28] in 1988 and later by Sigg [42] in
1996. The homology of the rank n free two-step nilpotent complex Lie
algebra Ln is a GLn(C)-module whose γ-weight space is isomorphic to
the homology of the bounded degree graph complex ∆γ, for all γ ∈ Nn.
The relationship with bounded degree graph complexes is discussed in
Remark 7.3.

3. Representation of the symmetric group on homology

Given a partition λ ` n, i.e., a weakly decreasing sequence of positive
integers (parts) whose sum is n, we say |λ| = n. The length of λ,
denoted `(λ), is the number of parts of λ. Let λ′ denote the conjugate
of the partition λ and let d(λ) denote the rank of λ; i.e., the size of
the main diagonal (or Durfee square) of the Ferrers diagram for λ.
Frobenius notation for a partition λ, such that d(λ) = d, is the array
(α1, . . . , αd|β1, . . . , βd) where αi = λi − i and βi = λ′i − i. The Specht
module (or irreducible representation) of Sn (over k) indexed by the
partition λ ` n, is denoted by Sλ.

Theorem 3.1 (Bouc [11]). For all p, n ∈ Z, where n ≥ 1, the follow-
ing isomorphism of Sn-modules holds

H̃p−1(Mn; k) ∼=Sn

⊕
λ : λ ` n
λ = λ′

d(λ) = |λ| − 2p

Sλ.

Theorem 3.1 was rediscovered several times, cf. [30], [37]. A result
equivalent to Theorem 3.1 was stated in an earlier paper of Józefiak
and Weyman [28] as a consequence of work in [27], and proved in a
later paper of Sigg [42]. These results are discussed Section 7.

There is an analogous result for the chessboard complex.

Theorem 3.2 (Friedman and Hanlon [24]). For all p,m, n ∈ Z, where
m,n ≥ 1, the following isomorphism of (Sm ×Sn)-modules holds

H̃p−1(Mm,n; k) ∼=Sm×Sn

⊕
(λ,µ)∈R(m,n,p)

Sλ
′ ⊗ Sµ,

where R(m,n, p) is the set of all pairs of partitions (λ ` m,µ ` n)
that can be obtained in the following way. Take a partition ν ` p that
contains an (m− p)× (n− p) rectangle but contains no (m− p+ 1)×
×(n − p + 1) rectangle. Add a column of size m − p to ν to obtain λ
and add a row of size n− p to ν to obtain µ. See Figure 3.1.
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Corollary 3.3 (Garst[26]). For all m ≤ n, the following isomorphism
of Sn-modules holds

H̃m−1(Mm,n; k) ∼=Sn

⊕
λ ` m

λ1 ≤ n−m

fλ S
λ∗ ,

where fλ is the number of standard Young tableaux of shape λ and λ∗

is the partition obtained from λ by adding a part of size n−m.

Remark 3.4. Recall that throughout this paper the field k is assumed
to have characteristic 0. Bouc actually proved Theorem 3.1 for fields
of finite characteristic greater than n as well as for fields of character-
istic 0. One can derive Theorem 3.1 for fields of characteristic greater
than n from the result for fields of characteristic 0 by using a long
exact sequence of Bouc [11] (see the remark at the end of Section 3 of
[21]). An analogous long exact sequence in [40] can be used to extend
Theorem 3.2 to fields of characteristic greater than m and n.

Friedman and Hanlon’s method of proof involves a beautiful use of
discrete Hodge theory. Dong and Wachs [21] showed that this method
can be applied to the matching complex resulting in an elegant new
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proof of Theorem 3.1. A closely related use of this technique appears
in [42]. We sketch these proofs next.

We begin with the proof of Dong and Wachs. Let Cp(∆; k) denote
the augmented p-chain space of a finite simplicial complex ∆ with co-
efficients in k. The combinatorial Laplacian Λp : Cp(∆; k) → Cp(∆; k)
is defined by

Λp = δp−1∂p + ∂p+1δp

where ∂ is the boundary map and δ is the coboundary map. Let G be
a group acting simplicially on ∆. This induces a representation of G
on H̃p(∆; k). The discrete analogue of Hodge theory first formulated
by Kostant [32] implies that

H̃p(∆; k) ∼=G ker Λp.

The key observation of [21] is that when one applies the Laplacian
Λp to an oriented simplex γ ∈ Cp(Mn; k) one gets

Λp(γ) = Tn · γ,
where Tn =

∑
1≤i<j≤n(i, j) ∈ kSn and (i, j) denotes a transposition.

By Schur’s lemma Tn acts on an irreducible representation Sλ as mul-
tiplication by a scalar cλ. Using a result in [35, Example 7] one sees
[24, Lemma 1] that the scalar is simply

cλ =
d∑
i=1

((
αi + 1

2

)
−
(
βi + 1

2

))
,(3.1)

where λ = (α1, . . . , αd | β1, . . . , βd) in Frobenius notation.
To decompose Cp(Mn; k) into irreducibles, one first observes that

Cp−1(Mn; k) ∼=Sn (S1p ◦ S2) . Sn−2p,(3.2)

where ◦ denotes the composition product (or plethysm) and . denotes
the induction product. There is a symmetric function formula of Lit-
tlewood for the composition product, cf., [35, I 5 Ex. 9b],∏

i≤j
(1− xixj) =

∑
ν∈B

(−1)|ν|/2sν ,(3.3)

where B is the set of all partitions of form (α1+1, . . . , αd+1 | α1, . . . , αd)
for some d, and sν is the Schur function indexed by ν. This and Pieri’s
rule for the induction product yield the decomposition into irreducibles:

Cp−1(Mn; k) =
⊕
λ∈An

apλS
λ,

where

An = {(α1, . . . , αd | β1, . . . , βd) ` n | d ≥ 1, αi ≥ βi ∀ i ∈ [d]}
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and apλ is a nonnegative integer. If λ is self-conjugate then

apλ =

{
1 if d(λ) = n− 2p

0 otherwise
.

Clearly for λ ∈ An, cλ = 0 if and only if λ is self-conjugate. It follows
that

ker Λp−1
∼=

⊕
λ : λ ` n
λ = λ′

apλ S
λ ∼=

⊕
λ : λ ` n
λ = λ′

d(λ) = n− 2p

Sλ.

Theorem 3.1 now follows by discrete Hodge theory. This method also
yields:

Theorem 3.5 (Dong and Wachs [21]). All the eigenvalues of the Lapla-
cian on the matching complex are nonnegative integers. Moreover for
each eigenvalue c, the c-eigenspace of the Laplacian Λp−1 on Mn de-
composes into the following direct sum of irreducible Sn modules⊕

λ ∈ An
cλ = c

apλ S
λ,

where apλ is the number of partitions ν ` 2p of the form ν = (β1 +
1, . . . , βd + 1 | β1, . . . , βd) such that λ/ν is a horizontal strip.

The following is a restatement of Theorem 4 and Corollary 2 of
Friedman and Hanlon [24]. It contains a simplification of an expression
appearing in Theorem 4.

Theorem 3.6 (Friedman and Hanlon [24]). All the eigenvalues of the
Laplacian on the chessboard complex are nonnegative integers. More-
over for each eigenvalue c, the c-eigenspace of the Laplacian Λp−1 on
Mm,n decomposes into the following direct sum of irreducible Sm×Sn

modules: ⊕
λ ` m
µ ` n

cλ + cµ = c+
(
n+m

2

)
− 2mn

apλ,µ Sλ ⊗ Sµ,

where apλ,µ is the number of partitions ν ` p such that λ/ν ′ and µ/ν are
horizontal strips, and cλ and cµ are defined in (3.1).
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Friedman and Hanlon show that Theorem 3.2 can be obtained from
Theorem 3.6, by establishing the following identity for (λ′, µ) ∈ R(m,n, p):

cλ + cµ =

(
m− p

2

)
+

(
n− p

2

)
− p− (m− p)(n− p).(3.4)

Note that the expression on the right of (3.4) simplifies to
(
m+n

2

)
−2mn.

We also have that if (λ′, µ) ∈ R(m,n, p) then apλ,µ = 1. Hence the

irreducible Sλ ⊗ Sµ has multiplicity 1 in the kernel of the Laplacian.
The proof is completed by showing that cλ + cµ is greater than the
expression on the right of (3.4) for all pairs (λ, µ) /∈ R(m,n, p) for
which apλ,µ 6= 0.

We will now sketch a slightly simplified version of Friedman and
Hanlon’s proof of Theorems 3.6. A straight-forward analysis of the
behavior of the Laplacian on an oriented simplex γ of the chessboard
complex yields

Λp−1(γ) = (Tm ⊗ 1 + 1⊗ Tn + p+ (n− p)(m− p)

−
(
n− p

2

)
−
(
m− p

2

)
) · γ

=

(
Tm ⊗ 1 + 1⊗ Tn −

(
m+ n

2

)
+ 2mn

)
· γ.

Since Tm ⊗ 1 acts as multiplication by the scalar cλ on the irre-
ducible Sλ ⊗ Sµ and 1 ⊗ Tn acts as multiplication by the scalar cµ,
the decomposition of the eigenspaces can be obtained by decomposing
Cp−1(Mm,n; k) into irreducibles. Observe that

Cp−1(Mm,n; k) ∼=Sm×Sn (S1p ◦ (S1 ⊗ S1)).(Sm−p ⊗ Sn−p).(3.5)

By the symmetric function formula (4.3′) in [35, I 4] we have

Cp−1(Mm,n; k) ∼=Sm×Sn

(⊕
ν`p

Sν
′ ⊗ Sν

)
.(Sm−p ⊗ Sn−p).

The decomposition of Cp−1(Mm,n; k) into irreducibles now follows from
Pieri’s rule.

Problem 3.7. Find a natural basis for the (co)homology of Mn in-
dexed by standard Young tableaux of self-conjugate shape. Find an
analogous basis for H̃p−1(Mm,n; k) indexed by pairs of standard Young
tableaux in R(m,n, p). In [40] such a basis for the top homology (and
cohomology) of the chessboard complex is constructed; see Section 6.3.
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4. Hopf trace formula and Littlewood’s identity

There is another symmetric function identity of Littlewood [34, p.238],
namely ∏

i≤j
(1− xixj)

∏
i

(1− xi)−1 =
∑
λ=λ′

(−1)
|λ|−d(λ)

2 sλ.(4.1)

A combinatorial proof of the Littlewood identities (3.3) and (4.1) in-
volving matchings is given by Burge [17]. Macdonald [35, I 5 Ex. 9b,c]
observes that Littlewood’s identities (3.3) and (4.1) can be interpreted
as the Weyl denominator formula for the root systems Cn and Bn,
respectively.

Using Theorem 3.1 one can also interpret Littlewood’s formula (4.1)
as the Hopf trace formula for the matching complex. Indeed, by ex-
tracting the degree n terms one gets∑

p≥0

(−1)pep[h2]hn−2p =
∑
p≥0

(−1)p
∑

λ : λ ` n
λ = λ′

d(λ) = n− 2p,

sλ(4.2)

where ep and hr are the elementary and complete homogeneous sym-
metric functions, resp., and f [g] denotes plethysm. The representation
theoretic version (via the Frobenius characteristic) of (4.2) is⊕

p≥0

(−1)p(S1p ◦ S2).Sn−2p ∼=Sn

⊕
p≥0

(−1)p
⊕

λ : λ ` n
λ = λ′

d(λ) = n− 2p.

Sλ.

By (3.2) and Theorem 3.1, this is precisely the Hopf trace formula for
the matching complex:⊕

p≥0

(−1)pCp−1(Mn;C) ∼=Sn

⊕
p≥0

(−1)p H̃p−1(Mn;C).

This interpretation of Littlewood’s formula can be found in [43, Solu-
tions 7.29a]. Representation theoretic interpretations of Littlewood’s
formula involving Lie algebra homology are given by Józefiak and Wey-
man [28] and by Sigg [42].

We now present the chessboard complex analogue of Littlewood’s
formula (4.1). By Theorem 3.2 and (3.5), the Hopf trace formula for
the chessboard complex is⊕
p≥0

(−1)p(S1p◦(S1⊗S1)).(Sm−p⊗Sn−p) ∼=Sm×Sn

⊕
p≥0

(−1)p
⊕

(λ,µ)∈R(m,n,p)

Sλ
′⊗Sµ.
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By taking the Frobenius characteristic and summing over all m,n one
gets

(4.3)∏
i,j

(1− xiyj)
∏
i

(1− xi)−1(1− yi)−1 =
∑

(λ,µ)∈R
(−1)p(λ,µ)sλ′(x)sµ(y),

where R =
⊎
m,n,pR(m,n, p) and p(λ, µ) is the unique integer p such

that (λ, µ) ∈ R(m,n, p).

5. Connectivity

Define the connectivity degree of a simplicial complex ∆ to be the
largest j ≤ dim ∆ such that ∆ is j-connected.

For 1 ≤ m ≤ n, let

νn = bn+ 1

3
c − 1 and νm,n = min{m, bm+ n+ 1

3
c} − 1.

.

Theorem 5.1 ( Björner, Lovász, Vrécica, Z̆ivaljević [6]). For n ≥ 2,
the connectivity degree of the matching complex Mn is at least νn − 1.
For 1 ≤ m ≤ n, the connectivity degree of the chessboard complex Mm,n

is at least νm,n − 1.

This result, just for the matching complex, was also proved by Bouc
[11]. In [6] the result is proved using a nerve lemma. It is conjec-
tured in [6] that these connectivity bounds are sharp. Theorems 3.1
and 3.2 imply the validity of the conjecture only for certain values of
m and n because these theorems determine the Betti numbers and
not the torsion. It turns out that there is torsion in H̃νn(Mn;Z) and
H̃νm,n(Mm,n;Z) for n sufficiently large and m sufficiently close to n.
Torsion is discussed in the next section. The following theorem settles
the conjecture.

Theorem 5.2 (Bouc [11], Shareshian and Wachs [40]). For n ≥ 3,

H̃νn(Mn;Z) 6= 0,(5.1)

and for 2 ≤ m ≤ n,

H̃νm,n(Mm,n;Z) 6= 0.(5.2)

In [11] Bouc establishes (5.1) for the cases n ≡ 0, 1 mod 3. It is ob-
served in [40] that the 2 mod 3 case follows from a long exact sequence
in [11] and the 1 mod 3 case. Equation (5.2) is proved in [40] by means
of an analogous long exact sequence which is used to reduce the m+n ≡
2 mod 3 case to the 1 mod 3 case. The m + n ≡ 0, 1 mod 3 cases are
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handled by showing that certain nonzero elements of H̃νm+n(Mm+n;Z)

are in H̃νm,n(Mm,n;Z) when 2m− 1 > n and by applying Theorem 3.2
when 2m− 1 ≤ n.

A consequence of Theorem 5.2 is that the depth of the Stanley-
Reisner ring of the matching complex Mn is νn+1 and of the chessboard
complex Mm,n is νm,n + 1 (see [6]).

The r-skeleton of a simplicial complex ∆ is denoted by ∆(r) and is
defined to be the subcomplex of ∆ generated by faces of dimension

r or less. A consequence of Theorem 5.1 is that the skeleta M
(νn)
n

and M
(νm,n)
m,n are homotopy Cohen-Macaulay. This led Björner, Lovász,

Vrécica and Z̆ivaljević to conjecture that these skeleta are shellable [6].
This conjecture was proved first for the chessboard complex by Ziegler
[53] by establishing vertex decomposability, a condition stronger than
shellability. Shareshian and Wachs [40] [39] settled the conjecture for
the matching complex by exhibiting an explicit shelling order of the
facets.

Theorem 5.3 (Ziegler [53], Shareshian and Wachs [40][39]). For all n ≥
2, the skeleton M

(νn)
n is shellable, and for all 1 ≤ m ≤ n, the skeleton

M
(νm,n)
m,n is shellable.

Ziegler [53] also establishes vertex decomposability of skeleta of chess-
board complexes for certain classes of nonrectangular shapes.

Problem 5.4. Show that M
(νn)
n is vertex decomposable.1

6. Torsion

In this section we report on joint work with Shareshian [40][39] deal-
ing with torsion in the bottom nonvanishing integral homology of the
matching and chessboard complexes. Recall from the previous section
that the bottom nonvanishing integral reduced homology of Mn and
Mm,n occurs in degree νn and νm,n, respectively. We will see that these
bottom nonvanishing homology groups have a very nice structure.

As is customary, we suppress Z in our notation for integral homology
of ∆ and write H̃p(∆) instead of H̃p(∆;Z).

6.1. The matching complex. It follows from Theorem 3.1 that the
integral homology group H̃νn(Mn) is finite if and only if n = 7, 10 or
n ≥ 12. This is because the only values of n, for which there is a self-
conjugate partition n whose rank is n−2(νn+1), are n ≤ 6, n = 8, 9, 11.

1See New Developments Section at the end of the paper.
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One can see 3-torsion in H̃1(M7) by looking at Figure 1.1. The union
of the triangles shown is bounded by the 1-chain 3ρ where

ρ = (13, 24) + (24, 15) + (15, 26) + (26, 13).

If the cycle ρ is not a boundary, then H̃1(M7) has 3-torsion. This is
indeed the case. In fact it turns out that ρ generates the group H̃1(M7).

The integral homology groups of Mn, for n ≤ 12, are shown in
Table 6.1 which first appeared in [2]. They were computed using a
computer program of Heckenbach which was later updated by Dumas,
Heckenbach, Saunders and Welker [22]. The table shows that Mn can
have torsion and it suggests that there is p-torsion only for the prime
p = 3, see [2, Question 9.2]. Bouc [11] showed that this is indeed the
case for the bottom nonvanishing homology ofMn when n ≡ 0, 1 mod 3.
Shareshian and Wachs [40] extend this to all n.

n\i 0 1 2 3 4 5

2 0 0 0 0 0 0
3 Z2 0 0 0 0 0
4 Z2 0 0 0 0 0
5 0 Z6 0 0 0 0
6 0 Z16 0 0 0 0
7 0 Z3 Z20 0 0 0
8 0 0 Z132 0 0 0
9 0 0 Z42 ⊕ Z8

3 Z70 0 0
10 0 0 Z3 Z1216 0 0
11 0 0 0 Z1188 ⊕ Z45

3 Z252 0
12 0 0 0 Z56

3 Z12440 0

Table 6.1: Integral homology of matching complex H̃i(Mn)

Theorem 6.1 (Bouc[11]).

(i) If n ≡ 1 mod 3 and n ≥ 7 then H̃vn(Mn) ∼= Z3.
(ii) If n ≡ 0 mod 3 and n ≥ 12 then H̃vn(Mn) is a nontrivial 3-group

of exponent at most 9.

Theorem 6.2 (Shareshian and Wachs [40]). For n ≥ 12 (except pos-
sibly n = 14),

H̃νn(Mn) ∼= Zrn3 ,
where rn ≥ 1.

To prove Theorem 6.1, Bouc first computes H̃ν7(M7) to be Z3. He
then constructs a long exact sequence of homology from which it follows
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immediately that for n ≡ 0, 1 mod 3, the homology group H̃νn(Mn) is
spanned by cycles of the form

α ∗ β,
where

α ∈ H̃0(M{a,b,c}) and β ∈ H̃νn−3(M[n]\{a,b,c})

for some distinct a, b, c ∈ [n]. Here, ∗ denotes an operation associated
with concatenation of oriented simplexes, and MA denotes the simpli-
cial complex of degree 1 graphs on node set A. Since 3(α∗β) = α∗3β,
one can conclude by induction that H̃νn(Mn) has exponent at most 3
in the case that n ≡ 1 mod 3 and n ≥ 7. Bouc does some additional
work to conclude that the rank is 1 and still more work to handle the
case n ≡ 0 mod 3.

The computer calculation H̃4(M12) = Z56
3 yields the improvement of

Bouc’s result for the case n ≡ 0 mod 3. It provides the base step of the
induction for this case.

Although it is easy to use Bouc’s long exact sequence to establish
the nontriviality of H̃νn(Mn) in the case n ≡ 2 mod 3, the fact that the
exponent of H̃νn(Mn) is 3 in the case that n ≡ 2 mod 3 and n ≥ 17
does not follow so easily from Bouc’s long exact sequence. It is shown
in [40] that if n ≡ 2 mod 3 then H̃νn(Mn) is spanned by cycles of the
form

α ∗ β,
where

α ∈ H̃1(M{a,b,c,d,e}) and β ∈ H̃νn−5(M[n]\{a,b,c,d,e})

for some distinct a, b, c, d, e ∈ [n]. This reduces the 2 mod 3 case to the
0 mod 3 case. Indeed, for n ≥ 17 we have 3(α ∗ β) = α ∗ 3β = 0, since
n− 5 ≡ 0 mod 3 and n− 5 ≥ 12. Hence the exponent of H̃νn(Mn) is 3
for n ≡ 2 mod 3 and n ≥ 17. Note that this argument does not work
for H̃ν14(M14) since H̃ν9(M9) has a nontrivial free part. The homology
of Mn has been computed using the software of [22] only up to n = 13.

6.2. The chessboard complex. Table 6.2, which was obtained by
using the software of [22], gives the bottom nonvanishing homology
groups of the chessboard complex Mm,n for 2 ≤ m ≤ n ≤ 7. It is
clear that bottom nonvanishing homology is free when 2m − 1 ≤ n.
Indeed, in this case νm,n = m − 1 = dimMm,n. Hence the bottom
nonvanishing homology is the same as the top homology which has to
be free. It follows that when 2m − 1 ≤ n, the bottom nonvanishing
homology can be computed using the Friedman-Hanlon decomposition
(Theorem 3.2).
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m\n 2 3 4 5 6 7

2 Z Z Z5 Z11 Z19 Z29

3 Z4 Z2 Z14 Z47 Z104

4 Z15 Z20 Z5 Z225

5 Z3 Z152 Z98

6 Z25 ⊕ Z10
3 Z3

7 Z588 ⊕ Z66
3

Table 6.2: Bottom nonvanishing homology H̃νm,n(Mm,n)

Note that the only finite groups appearing in Table 6.2 are

H̃ν5,5(M5,5) = H̃ν6,7(M6,7) = Z3.

This suggests analogues of Theorems 6.1 and 6.2.

Theorem 6.3 (Shareshian and Wachs [40]). Let m ≤ n.

(i) If m+ n ≡ 1 mod 3 and 5 ≤ n ≤ 2m− 5 then H̃vm,n(Mm,n) ∼= Z3.

(ii) If m + n ≡ 0 mod 3 and 9 ≤ n ≤ 2m − 9 then H̃vm,n(Mm,n) is a
nontrivial 3-group of exponent at most 9.

(iii) If m + n ≡ 2 mod 3 and 13 ≤ n ≤ 2m − 13 then H̃vm,n(Mm,n) is
a nontrivial 3-group of exponent at most 9.

It is conjectured in [40] that the exponent of H̃vm,n(Mm,n) is in fact
3 in all cases. The following theorem states that in order to establish
this conjecture one needs only check it for m = n = 9. However the
computer, using the software of [22], is not yet able to produce results
for these values.

Theorem 6.4 (Shareshian and Wachs [40]). If H̃ν9,9(M9,9) has expo-

nent 3 then so does H̃vm,n(Mm,n), for all m and n that satisfy the con-
ditions of Theorem 6.3

The proofs of these theorems are similar to, but considerably more
difficult than the proofs of their counterparts for the matching complex
(Theorems 6.1 and 6.2). It is straightforward to construct a chessboard
complex analogue of Bouc’s long exact sequence. However, it is not as
easy to exploit this sequence as it was to use the original sequence. In
fact, it is necessary to understand the top homology of the chessboard
complex in order to proceed with the induction process used in the
proof.

We briefly explain how top homology enters the proof for the m+n ≡
0, 1 mod 3 cases. For m ≤ n ≤ 2m− 2 the long exact sequence readily
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yields a decomposition of generating cycles of H̃νm,n(Mm,n) into cycles
of the form α ∗ β, where

α ∈ H̃0(MI,J) and β ∈ H̃νm−|I|,n−|J|(M[m]−I,[n]−J),

for I ⊆ [m], J ⊆ [n] such that

|I| = 1, |J | = 2 or |I| = 2, |J | = 1.

Again we have

3(α ∗ β) = α ∗ 3β.

However, if |I| = 2 and |J | = 1 then m − 2 and n − 1 might not be
close enough to satisfy the hypothesis of Theorem 6.3 which means
that the induction hypothesis 3β = 0 cannot be invoked. Indeed,
H̃νm−2,n−1(M[m]−|I|,[n]−|J |) could be free top homology. To overcome this
problem, it is necessary to find generating cycles for the top homology
of the chessboard complex which decompose into smaller cycles. This
is accomplished by the construction of a basis for the top homology of
the chessboard complex.

6.3. Basis for top (co)homology of the chessboard complex.
It follows immediately from Corollary 3.3 that the rank of the top
homology of the chessboard complex Mm,n is the number of pairs of
standard Young tableaux (S, T ) such that S has m cells, T has n cells
and the shape of S is the same as the shape of T minus the first row.
Let Pm,n be the set of such pairs of standard tableaux. We construct for

each (S, T ) ∈ Pm,n, an element ρ(S, T ) ∈ H̃m−1(Mm,n) and an element

γ(S, T ) ∈ H̃m−1(Mm,n), and show that these elements form bases for
homology and cohomology, respectively. This construction is based on
the classical Robinson-Schensted correspondence.

Let (S, T ) ∈ Pm,n. First add a cell with entry ∞ to the bottom of
each of the first n −m columns (some may be empty) of S to obtain
a semistandard tableau S∗ of the same shape as T . (Here ∞ repre-
sents a number larger than m.) The inverse of the Robinson-Schensted
bijection applied to (S∗, T ) produces a permutation σ of the multiset
{1, 2, . . . ,m,∞n−m}. The multiset permutation σ corresponds natu-
rally to the oriented simplex (i.e., matching) of Mm,n given by

((σ(i1), i1), (σ(i2), i2), . . . , (σ(im), im)) ,

where σ(i1)σ(i2) · · ·σ(im) is the subword of σ = σ(1)σ(2) · · ·σ(n) ob-
tained by removing the ∞’s. This oriented simplex is clearly a cocy-
cle since it is in the top dimension. Let γ(S, T ) be the coset of the
coboundary group Bm−1(Mm,n) := Im δm−2 that contains this oriented
simplex.
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We demonstrate the procedure for constructing γ(S, T ) by letting
(S, T ) be the pair of tableaux given in Figure 6.1. After applying the
inverse of Robinson-Schensted to (S∗, T ) we have the multiset permu-
tation∞∞ 2∞ 4∞ 3 1. The oriented simplex that corresponds to this
multiset permutation is ((2, 3), (4, 5), (3, 7), (1, 8)). Hence, γ(S, T ) is
the coset of B3(M4,8) that contains the oriented simplex

((2, 3), (4, 5), (3, 7), (1, 8)).

1
2
4

3

S T

1 2
3

4
5

6

7
8

1
2
4

3
¥

¥

¥ ¥ 1 2
3

4
5

6

7
8

S* T

Figure 6.1

The construction of the cycles is a bit more involved. Recall that in
the inverse Robinson-Schensted procedure, an entry “pops” from a cell
in the top row of the left tableau when an entry is “crossed out” of the
right tableau. For each top cell, we must keep track of the entries of
S∗ that are popped and the corresponding entries of T that are crossed
out. For each i = 1, 2, . . . , n − m, let A∗i be the multiset of entries
that are popped from the ith cell of the top row of S∗ and let Bi be
the corresponding set of entries that are crossed out of T . One can
easily see that A∗i is actually a set and ∞ ∈ A∗i for all i. Now let
Ai = A∗i \ {∞}. So |Ai| = |Bi| − 1. It is easily observed that Mm,n is
an orientable pseudomanifold whenever m = n− 1 which implies that
its top homology is cyclic. For i = 1, . . . , n−m, let αi be the generator
of the cyclic group H̃|Ai|−1(MAi,Bi), which is unique up to sign. Now
define

ρ(S, T ) = α1 ∗ · · · ∗ αn−m,
which is unique up to sign.

We demonstrate the procedure for constructing ρ(S, T ) on the tableaux
S, T of Figure 6.1. First entry 8 is crossed out of T and entry 1 is
popped from the first cell of the first row of S∗. So 1 is placed in A∗1
and 8 is placed in B1. Next entry 7 is crossed out and entry 3 is popped
from the second cell. So 3 is placed in A∗2 and 7 is placed in B2. We
eventually end up with

A∗1 = {1, 2,∞}, A∗2 = {3, 4,∞}, A∗3 = A∗4 = {∞},
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B1 = {1, 3, 8}, B2 = {2, 5, 7}, B3 = {4}, B4 = {6}.
Hence

A1 = {1, 2}, A2 = {3, 4}, A3 = A4 = ∅
Now ρ(S, T ) = α1 ∗ α2, where α1 is the generator of H̃1(M{1,2},{1,3,8})

and α2 is the generator of H̃1(M{3,4},{2,5,7}).

Theorem 6.5 (Shareshian and Wachs [40]). Let m ≤ n. Then

• {ρ(S, T ) | (S, T ) ∈ Pm,n} is a basis for H̃m−1(Mm,n).

• {γ(S, T ) | (S, T ) ∈ Pm,n} is a basis for the free part of H̃m−1(Mm,n).

Theorem 6.5 is proved by finding an ordering of the pairs of standard
tableaux

(S1, T1), . . . , (St, Tt)

in Pm,n such that the matrix

(〈ρ(Si, Ti), γ(Sj, Tj)〉)i,j=1,...,t

is unitriangular. Here 〈, 〉 denotes the pairing of homology and coho-
mology. The invertibility of the matrix establishes independence of the
cycles (and cocycles). The result then follows from the Garst (Corol-
lary 3.3) or Friedman-Hanlon (Theorem 3.2) determination of the rank
of rational homology.

6.4. Homology of the m × (2m − 2) chessboard complex. For
m+ n ≡ 1 mod 3, the bottom nonvanishing homology of Mm,n is com-
pletely determined by Theorem 6.3 when m ≤ n < 2m− 2 and by the
Friedman-Hanlon result (Theorem 3.2) when n > 2m− 2. This leaves
n = 2m − 2 as the only remaining case. To see if H̃νm,2m−2(Mm,2m−2)
is finite, one can apply the Friedman-Hanlon result. In this case
R(m, 2m − 2,m − 1) consists of a single pair of partitions; namely
the pair ((m), (m− 1)2). From this one sees that the bottom nonvan-
ishing homology is not finite and that its free part has rank equal to
the number of standard Young tableaux of shape (m − 1)2 which is
well-known to be the Catalan number cm := 1

m

(
2m−2
m−1

)
. The next result

shows that there is no torsion part. Hence for all values of m,n such
that m + n ≡ 1 mod 3, the bottom nonvanishing homology of Mm,n is
either Z3 or free.

Theorem 6.6 (Shareshian and Wachs [40]). For n = 2m−2, we have

H̃νm,n(Mm,n) ∼= Zcm .

Consequently for n ≥ 2m − 2 the homology of the chessboard complex
Mm,n is free in all degrees.
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According to Theorem 3.2, the representation of S2m−2 on
H̃m−2(Mm,2m−2;C) is isomorphic to the Specht module indexed by the
partition λ = (m − 1)2. Theorem 6.6 is proved by constructing an
explicit Z-module isomorphism from the integral Specht module SλZ to

H̃νm,n(Mm,n). For a bijective tableau T of shape λ, i.e., a tableau of
shape λ with distinct entries in [|λ|], let eT be the polytabloid corre-
sponding to T (see (7.1) for the definition of polytabloid). It is well-
known that the set {eT |T a bijective tableau of shape λ} generates SλZ .

For T a tableau of shape (m−1)2, let ρT be the cycle in H̃m−2(Mm,2m−2)
given by

ρT = α1 ∗ α2 ∗ · · · ∗ αm−1,

where αi is the cycle (i, ai)− (i, bi) in H̃0(M{i},{ai,bi}) and

[
ai
bi

]
is the

ith column of T . It is shown, again using the basis for top homology
given in Theorem 6.5, that

(6.1)

span{ρT | T a bijective tableau of shape (m− 1)2} = H̃m−2(Mm,2m−2).

The homomorphism ψ : SλZ → H̃m−2(Mm,2m−2) is defined on genera-
tors by

ψ(eT ) = ρT .

It is shown that this map is well-defined by checking that the Gar-
nir relations of Sλ map to the boundary relations of H̃m−2(Mm,2m−2).
Clearly by (6.1), ψ is surjective. It therefore follows from the fact that
the modules are isomorphic over the rationals, that the homomorphism
ψ is an isomorphism. This argument also yields

Corollary 6.7. The set

{ρT | T a standard tableau of shape (m− 1)2}
is a basis for H̃m−2(Mm,2m−2).

6.5. Open problems.

Problem 6.8. Eliminate the use of the computer in showing that
H̃ν12(M12) and H̃ν5,5(M5,5) have exponent 3. This could lead to a proof

that H̃ν9,9(M9,9) has exponent 3 and thereby improve Theorem 6.3.

Problem 6.9. Find a formula or some combinatorial expression for
the ranks rn and rm,n of Theorems 6.2 and 6.3, respectively. In [40] the
following rough bounds on rn are derived for n ≥ 9 :

• If n ≡ 0 mod 3 then n− 1 ≤ rn ≤ 2(n− 2)rn−3.



24 WACHS

• If n ≡ 2 mod 3 then

(n− 1)(n− 3)− 1 ≤ rn ≤ (n− 2)(n− 3)(n− 4)rn−5 + 2(n− 2)rn−3

Analogous bounds are also given for the rank rm,n of the bottom non-
vanishing homology of the chessboard complex.

Problem 6.10. Determine the bottom nonvanishing homology of the
chessboard complex Mm,n for n = 2m − i, where i = 3, 4, 6, 7, 10. All
other values of i are covered by Theorems 3.2, 6.3 and 6.6. Computer
computations of Dumas (personal communication) have produced par-
tial results for (m,n) = (7, 8) which include the occurrence of 2-torsion.
It is shown in [40] that for (m,n) = (7, 8), there is 3-torsion and if the
exponent of this 3-torsion turns out to be 3 then the exponent is 3 in
all cases of Theorem 6.3.

Problem 6.11. Determine the torsion parts of arbitrary degree ho-
mology groups of the matching and chessboard complexes.

7. General degree bounds

The bounded degree graph complex for the complete graph is defined
as follows. Let γ = (γ1, . . . , γn) be an n-tuple of nonnegative integers.
The bounded degree graph complex ∆γ is defined to be the simplicial
complex of all graphs on node set [n] in which node i ∈ [n] has degree
at most γi. Loops are allowed and contribute 2 to the degree of the
node. Multiple edges are not allowed.

The bounded degree graph complex for a complete bipartite graph
is defined as follows. Let γ = (γ1, . . . , γm) and δ = (δ1, . . . , δn) be
sequences of nonnegative integers. The bounded degree bipartite graph
complex ∆γ,δ is defined to be the simplicial complex of all bipartite
graphs on partitioned node set [m] ] [n]′ in which node i ∈ [m] has
degree at most γi and node i′ ∈ [n]′ has degree at most δi. Note that
∆γ,δ can be viewed as the complex of rook placements on an m × n
chessboard so that there are at most γi rooks in row i for each i ∈ [m]
and at most δi rooks in column i for each i ∈ [n]. For this reason ∆γ,δ

has also been called the chessboard complex with multiplicities.
We may assume without loss of generality that γ and δ are weakly de-

creasing sequences of positive integers (i.e., partitions) since relabeling
the nodes and removing nodes with degree bound 0 gives an isomorphic
simplicial complex. For γ = jaj(j − 1)aj−1 · · · 1a1 , we let Σ(γ) denote
the Young subgroup Saj × · · ·×Sa1 ⊆ Sn. The Young subgroup Σ(γ)
acts naturally on ∆γ by permuting graph nodes of like degree bound as
does the direct product Σ(γ)×Σ(δ) act on ∆γ,δ. These actions induce
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representations of Σ(γ) and Σ(γ)×Σ(δ) on homology of ∆γ and ∆γ,δ,
respectively.

7.1. Representations on homology. In this subsection we discuss
Reiner and Roberts’ generalizations of Bouc’s decomposition of the
homology of the matching complex (Theorem 3.1) and Friedman and
Hanlon’s decomposition of the homology of the chessboard complex
(Theorem 3.2).

Let λ and γ be partitions of N and let T be a tableau of shape λ
and content γ, where the content of a tableau is a sequence whose ith
entry is the number of i’s appearing in the tableau. The group Σ(γ)
acts on the left on T by permuting the entries of T that have the same
multiplicity. The group SN acts on the right on T by permuting the
cells of T . These actions commute and preserve the shape and content
of T . The orbit of T under the right action of the subgroup of row
stabilizers is called a tabloid and is denoted by [T ]. Let Cλ be the
subgroup of column stabilizers of T . The polytabloid indexed by T is
defined to be

eT :=
∑
σ∈Cλ

sgnσ [Tσ],(7.1)

in the k-vector space generated by tabloids of shape λ and content
γ. The left action of Σ(γ) on tableaux extends to a left action on
polytabloids given by αeT = eαT for α ∈ Σ(γ). Let Sλ(γ) be the
Σ(γ)-module generated by polytabloids of shape λ and content γ.

Theorem 7.1 (Reiner and Roberts [37]). For all p ∈ Z and partitions
γ and δ, the following module isomorphisms hold

H̃p−1(∆γ; k) ∼=Σ(γ)

⊕
λ : λ ` |γ|
λ = λ′

d(λ) = |λ| − 2p

Sλ(γ).(7.2)

H̃p−1(∆γ,δ; k) ∼=Σ(γ)×Σ(δ)

⊕
(λ,µ)∈R(|γ|,|δ|,p)

Sλ
′
(γ)⊗ Sµ(δ).(7.3)

Since the semistandard polytabloids of shape λ and content γ form
a basis for Sλ(γ) one can express the Betti numbers in terms of the
Kostka numbers Kλ,γ.
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Corollary 7.2. The reduced Betti numbers satisfy

β̃p−1(∆γ) =
∑

λ : λ ` |γ|
λ = λ′

d(λ) = |λ| − 2p

Kλ,γ.(7.4)

β̃p−1(∆γ,δ) =
∑

(λ,µ)∈R(|γ|,|δ|,p)
Kλ′,γKµ,δ.(7.5)

Example: For γ = (2, 2, 2) we have

β̃p−1(∆γ) =
∑

λ : λ ` 6
λ = λ′

d(λ) = 6− 2p

Kλ,γ.

Since the only self-conjugate partition of 6 is λ = (3, 2, 1) and d(λ) = 2,
homology vanishes in all dimensions except (6 − 2)/2 − 1 = 1. In
dimension 1 we have

β̃1(∆(2,2,2)) = K(3,2,1),(2,2,2) = 2.

In fact, ∆(2,2,2) has the homotopy type of a wedge of two 1-spheres.

Since Sλ(1n) = Sλ, Bouc’s decomposition (Theorem 3.1) and Fried-
man and Hanlon’s decomposition (Theorem 3.2) are special cases of
(7.2) and (7.3), respectively. In [31] Karaguezian, Reiner and Wachs
show that one can actually derive (7.2) from Bouc’s decomposition and
(7.3) from Friedman and Hanlon’s decomposition. In order to describe
this derivation we need to review the notion of weight space of aGL(V )-
module. See [25] for further information on weight spaces. Let V be
a t-dimensional vector space over k. Fix an ordered basis v1, . . . , vt of
V , so that we can view the general linear group GL(V ) as a group of
t × t matrices over k. For x1, . . . , xt ∈ k, let diag(x1, . . . , xt) denote
the diagonal matrix in GL(V ) with these entries. Given a sequence
γ = (γ1, . . . , γt) of nonnegative integers, let xγ denote the product
xγ1

1 · · ·xγtt . Given a polynomial representation U of GL(V ), the weight
space of U corresponding to weight γ is denoted by Uγ and is defined
to be

Uγ = {u ∈ U : diag(x1, . . . , xt) · u = xγu ∀x1, . . . , xt ∈ k}.
For example, if U = V ⊗n then Uγ is generated by elements of the form
vi1 ⊗ · · · ⊗ vin where the sequence i1, . . . , in has γj occurrences of j for
each j ∈ [t].
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Now suppose γ is a partition of length n, where n ≤ t. We shall view
γ as a weight, i.e., a sequence of t nonnegative integers, by attaching
t − n copies of 0. Then the Young subgroup Σ(γ) ↪→ Sn ↪→ St ↪→
GL(V ) acts on U and preserves Uγ. So the weight space Uγ is a Σ(γ)-
module. When γ = 1t one has that Uγ is an St-module.

Recall that the theory of highest weights gives an indexing of ir-
reducible polynomial representations of GL(V ) by partitions with at
most t parts. Let V λ be the irreducible polynomial representation of
GL(V ) with highest weight λ if `(λ) ≤ dimV and 0 otherwise. By a
basic construction of irreducible GL(V )-modules (cf. [25, §8.1]), the
weight space V λ

γ is isomorphic to the Σ(γ)-module Sλ(γ).
The key idea in deriving (7.2) is the observation that the Σ(γ)-

module H̃p−1(∆γ; k) is the γ-weight space of a certain polynomialGL(V )-
moduleM described below. The decomposition of the 1t-weight space
of any polynomial representation of GL(V ) into irreducible St-modules
determines the decomposition of the GL(V )-module into irreducibles.
Indeed the multiplicity of V λ is the same as the multiplicity of Sλ in the
1t-weight space. Hence Bouc’s decomposition determines a decomposi-
tion ofM into irreducible GL(V )-modules which in turn determines a
decomposition of Mγ = H̃p−1(∆γ; k) into the γ-weight spaces of irre-
ducible GL(V )-modules. This decomposition is precisely what is given
in (7.2). An analogous argument holds for (7.3).

The GL(V )-module M is the homology a complex (Up(V ), δp) of
GL(V )-modules which we now define. For each p ∈ N, form the GL(V )
module

Up(V ) = ∧p(Sym2 V )⊗ Sym∗ V,

where ∧p is the pth exterior power, Symp is the pth symmetric power
and Sym∗ := ⊕p Symp is the symmetric algebra. Let δp : Up(V ) →
Up−1(V ) be defined on generators by

δp(v1v2 ∧ · · · ∧ v2p−1v2p ⊗ u)

=

p∑
j=1

(−1)jv1v2 ∧ · · · ∧ v̂2j−1v̂2j ∧ · · · ∧ v2p−1v2p ⊗ uv2j−1v2j,

whereˆdenotes deletion, vi ∈ V and u ∈ Sym∗ V .

Remark 7.3. The decomposition of the homology of (Up(V ), δp), into
irreducible GL(V )-modules was first stated prior to Bouc’s work by
Józefiak and Weyman [28] (based on work of Józefiak, Pragacz, and
Weyman [27]). The proof outlined here (the Dong-Wachs proof of
Theorem 3.1 plus the Karaguezian-Reiner-Wachs lifting technique de-
scribed above) can be viewed as simpler and more elementary. Józefiak
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and Weyman also observe in [28] that by taking the Young dual of
Up(V ) (i.e., the map that sends irreducible V λ to V λ′) and the adjoint
of δp, one transforms the complex (Up(V ), δp) into the Koszul complex

of the free two-step nilpotent Lie algebra
∧2 V ⊗V (whose only nonzero

bracket on generators is [x, y] := x ∧ y, where x, y ∈ V ). Hence Bouc’s
decomposition also yields a decomposition of the homology of the free
two-step nilpotent Lie algebra. This decomposition was also derived
by Sigg [42] by using the discrete Laplacian for Koszul complexes (cf.
[21]).

To derive (7.3) from the Friedman-Hanlon decomposition, let V1

and V2 be finite dimensional vector spaces. One uses the complex
(∧p(V1 ⊗ V2)⊗ (Sym∗ V1 ⊗ Sym∗ V2), δp) of GL(V1) × GL(V2)-modules
whose differential

δp : ∧p(V1⊗V2)⊗(Sym∗ V1⊗Sym∗ V2)→ ∧p−1(V1⊗V2)⊗(Sym∗ V1⊗Sym∗ V2)

is defined on generators by

δ (((v1,1 ⊗ v2,1) ∧ · · · ∧ (v1,p ⊗ v2,p))⊗ (u1 ⊗ u2)) =
p∑
j=1

(−1)j((v1,1⊗v2,1)∧· · ·∧ ̂(v1,j ⊗ v2,j)∧· · ·∧(v1,p⊗v2,p))⊗(u1v1,j⊗u2v2,j),

where vi,h ∈ Vi and ui ∈ Sym∗ Vi. The γ, δ-weight space of the pth

homology of this complex is isomorphic to H̃p−1(∆γ,δ; k).

7.2. Homotopy. This subsection deals with homotopy results of Dong
[19] which are, in a sense, predicted by (7.4). These homotopy results
are quite interesting in their own right and yield corresponding results
about quadratic Veronese resolutions (cf. Section 2) that are indepen-
dent of the characteristic of k, see [19].

An immediate consequence of (7.4) is that ∆γ is Q-acyclic if and only
if for all self-conjugate partitions λ ` |γ|, the Kostka number Kλ,γ = 0.
It is well-known and easy to see that Kλ,γ 6= 0 if and only if γ E λ,
where E denotes dominance order. Hence, it follows from (7.4) that ∆γ

is Q-acyclic if and only if no self-conjugate partition λ ` |γ| dominates
γ. Dong obtains the following homotopy version of this result by using
techniques from Forman’s discrete Morse theory [23].

Theorem 7.4 (Dong [19]). For any partition γ, the following are equiv-
alent

1. ∆γ is Q-acyclic.
2. ∆γ is acyclic.
3. ∆γ is contractible.
4. ∆γ is collapsible.
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5. There is no self-conjugate partition of |γ| that dominates γ.

Corollary 7.5 (Dong [19]). If γ is not dominated by its conjugate then
∆γ is contractible.

The converse of Corollary 7.5 does not hold. There are partitions
that are dominated by their conjugates but not by any self-conjugate
partition of the same size. For example 12 is such a partition. In [19]
a complete characterization of such partitions is given.

We will say that a partition γ is balanced if the number of cells below
its diagonal equals the number of cells above its diagonal. It is not hard
to see that for balanced γ, if Kλ,γ 6= 0 and λ = λ′ then d(λ) = d(γ). It
therefore follows from (7.4) that the rational homology of ∆γ vanishes

in all dimensions but dimension |γ|−d(γ)
2
− 1. Dong uses discrete Morse

theory to obtain the following homotopy version of this result.

Theorem 7.6 (Dong [19]). Suppose γ is a balanced partition. Then

∆γ has the homotopy type of a wedge of ( |γ|−d(γ)
2
− 1)-dimensional

spheres. The number of spheres is positive if and only if γ is domi-
nated by its conjugate.

Dong obtains the same result for partitions for which the difference
between the number of cells below the diagonal and the number of cells
above the diagonal is 2. If the difference is 1 or more than 2, homology
can occur in several dimensions. Dong gives γ = 3213 as an example
and uses (7.4) to establish homology in several dimensions.

For any partition γ, let T (γ) be the set of semistandard tableaux
of content γ and self-conjugate shape. We will write γ = γ̃ ◦ γ̂ if
γ = (α1, . . . , αd | β1, . . . , βd), γ̃ = (α1, . . . , αl | β1, . . . , βl) and γ̂ =
(αl+1, . . . , αd | βl+1, . . . , βd), where 0 ≤ l ≤ d. Dong constructs a
bijection between T (γ̃ ◦ γ̂) and T (γ̃)×T (γ̂) for balanced γ̃. It follows
from this bijection and (7.4) that the Betti numbers of ∆γ̃◦γ̂ can be
expressed in terms of the Betti numbers of ∆γ̃ and ∆γ̂. The homotopy
version of this relation is given in the following result.

Theorem 7.7 (Dong[19]). Let γ = γ̃ ◦ γ̂, where γ̃ is balanced. Then

∆γ ' ∆γ̃ ∗∆γ̂,

where ∗ denotes the join operation and ' denotes homotopy equiva-
lence. Consequently ∆γ has the homotopy type of a wedge of m copies

of the |γ̃|−d(γ̃)
2

-suspension of ∆γ̂, where m =
∑

λ=λ′ Kλ,γ̃.

It can be shown algebraically or combinatorially that

Kλ,γ = KNN−λ,NN−γ,
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whenever N ≥ `(γ), `(λ), `(γ′), `(λ′) [43, Ex. 7.41]. By (7.4) this im-
plies a relation between the Betti numbers of ∆γ and ∆NN−γ which
suggests a relationship between the Alexander dual of ∆γ and ∆NN−γ.
The Alexander dual of a simplicial complex ∆ on vertex set V is the
simplicial complex

∆∨ := {F ⊆ V | V − F /∈ ∆}.
Note that if γi ≥ 2 for all i then ∆∨γ is the simplicial complex of graphs
on [n] such that at least one node i ∈ [n] has degree less than or equal
to n− γi.

Theorem 7.8 (Dong [19]). Let n ≥ γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 1. If
γn ≥ 2 then

∆∨γ ' Suspn−1(∆nn−γ),

where Suspj denotes the j-fold suspension. More generally, if γn−i ≥ 2
and γn−i+1 = · · · = γn = 1 then

Suspi(∆∨γ ) ' Suspn−1(∆nn−γ).

The proof makes use of the Wedge Lemma from the theory of dia-
grams of spaces, cf. [52].

7.3. Open problems.

Problem 7.9. Generalize the results of Sections 5 and 6 to bounded
degree graph complexes. In particular, find the connectivity degree and
determine the torsion in the bottom nonvanishing homology.

Problem 7.10. Dong (personal communication) has obtained a bipar-
tite graph analogue of Theorem 7.8. Find bipartite graph analogues of
the other homotopy results in Section 7.2 which are predicted by (7.5).

Problem 7.11. Are there nice bases for homology and cohomology of
∆γ when γ is balanced? This basis should be indexed in a natural way
by standard tableaux of content γ and self-conjugate shape.

8. Digraphs, multigraphs and Bn-analogues

In this section we present results of Wachs [51] extending the work of
previous sections to digraph and multigraph complexes. The digraph
version of the matching complex considered in [51] is different from one
considered earlier by Björner and Welker [10] which is also discussed
here. This section also deals with Bn-analogues and wreath product
generalizations of results in previous sections.
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8.1. Matching complexes. When one multiplies the two Littlewood
identities (3.3) and (4.1) one obtains

∏
i,j

(1− xixj)
∏
i

(1− xi)−1 =
∑
λ = λ′

β ∈ B

(−1)(|λ⊗β)|−d(λ))/2 sλ⊗β,(8.1)

where B is the set of partitions of the form (α1 + 1, . . . , αd + 1 |
α1, . . . , αd) for some d, and λ⊗ β denotes the skew shape

(λ1 + β1, λ2 + β1, . . . , λ`(λ) + β1, β1, . . . , β`(β))/β
`(λ)
1 .

By extracting the degree n terms and applying the inverse of the Frobe-
nius characteristic map one gets⊕

p≥0

(−1)p (S1p ◦ (S1 ⊗ S1)).Sn−2p ∼=
⊕
p≥0

(−1)p
⊕
λ = λ′

β ∈ B
|λ|+ |β| = n
d(λ) = n− 2p

Sλ⊗β

The pth summand on the left side of this isomorphism is the repre-
sentation of Sn on the (p − 1)st chain space of the directed matching
complex which is defined to be the simplicial complex of all directed
graphs on node set [n] in which each node has total degree (i.e., in-
degree plus out-degree) at most 1. So it is reasonable to expect that
the inner sum of the right side is the homology of the directed match-
ing complex, making the isomorphism the Hopf trace formula for the
directed matching complex. This is indeed the case. Let MD

n denote
the directed matching complex on node set [n].

Theorem 8.1 (Wachs [51]). For p, n ∈ Z, where n ≥ 1,

H̃p−1(MD
n ; k) ∼=Sn

⊕
λ = λ′

β ∈ B
|λ|+ |β| = n
d(λ) = n− 2p

Sλ⊗β,

where B is the set of partitions of the form (α1 + 1, . . . , αd + 1 |
α1, . . . , αd) for some d.

The directed matching complex can be viewed as the matching com-
plex of a multigraph. For r, n ≥ 1, let Kr

n be the complete r-multigraph
on node set [n], i.e., the multigraph with r distinct edges between each
(unordered) pair of nodes in node set [n]. Let M r

n be the simplicial
complex of all subgraphs of Kr

n for which each node has degree at most
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1. We will think of the r distinct edges as colored edges and denote the
edge between node i and node j colored by c ∈ [r] as ({i, j}, c). Let Sn

act on M r
n by permuting node labels. The permutation σ ∈ Sn sends

colored edge ({i, j}, c) to ({σ(i), σ(j)}, c). There is an obvious isomor-
phism between simplicial complexes MD

n and M2
n. However, this iso-

morphism is not Sn-equivariant. For example transposition (1, 2) sends
directed edge (1, 2) to directed edge (2, 1). This translates under the
isomorphism to changing the color of the colored edge ({1, 2}, c). The
following generalization of Theorem 3.1 shows that the Sn-homology
modules of MD

n and M2
n are related by a sign twist.

Theorem 8.2 (Wachs [51]). For p, n, r ∈ Z, where n, r ≥ 1,

H̃p−1(M r
n; k) ∼=Sn

⊕
λ = λ′

β ∈ B
|λ|+ |β| = n
d(λ) = n− 2p

(r − 1)|β|/2 Sλ⊗β
′

The proofs of Theorems 8.1 and 8.2 rely on the following construc-
tion. Let ∆ be a simplicial complex on vertex set V and let r ≥ 1.
We form a new simplicial complex ∆r, called the r-inflation of ∆. The
vertex set of ∆r is {(v, c) | v ∈ V, c ∈ [r]} and the faces of ∆r are of the
form {(v1, c1), . . . , (vk, ck)} where {v1, . . . , vk} is a k element face of ∆
and cj ∈ [r] for all j = 1, . . . , k. We can think of {(v1, c1), . . . , (vk, ck)}
as a coloring of the vertices of face {v1, . . . , vk}. It is easy to see that
the multigraph matching complex M r

n is the r-inflation of the matching
complex Mn.

Let
∨

denote the wedge operation on connected topological spaces.
For any connected topological space X, let X∨j denote the wedge of
j copies of X. For any simplicial complex ∆, let and let lk∆ F denote
the link of a face F in ∆.

Theorem 8.3 (Björner, Wachs, Welker [7]). For any connected sim-
plicial complex ∆ and r ≥ 1,

∆r '
∨
F∈∆

Susp|F |(lk∆ F )∨((r−1)|F |).

Note that if ∆ is not connected then one can apply Theorem 8.3 to
each component of ∆. Clearly Mn is connected if and only if n = 2 or
n ≥ 5.

Corollary 8.4 (Wachs[51]). For r ≥ 1 and n ≥ 5,

M r
n '

bn
2
c∨

i=0

Suspi(Mn−2i)
∨a(n,r,i),
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where a(n, r, i) = (r − 1)i n!
(n−2i)!2ii!

.

In [4], Björner uses the theory of subspace arrangements to prove
the r = 2 case of Theorem 8.3. The general result is a consequence of
a generalization of Quillen’s fiber lemma due to Björner, Wachs and
Welker [7]. An equivariant homology version of Theorem 8.3 is used to
prove Theorems 8.1 and 8.2.

It follows from Corollary 8.4 that all the homotopy and integral
homology results for the matching complex given in Sections 5 and
6 can be lifted to the multigraph matching complex. We have the
following result, for example.

Theorem 8.5 (Wachs [51]). For r ≥ 1 and n ≥ 2, the connectivity
degree of the multigraph matching complex M r

n is νn − 1. Moreover, if
n ≡ 1 mod 3 then

H̃νn(M r
n) = H̃νn(Mn)

and if n ≡ 0, 2 mod 3 then

H̃νn(M r
n) = H̃νn(Mn)⊕ (r − 1)

(
n

2

)
H̃νn−2(Mn−2).

Now let us turn to the multigraph version of the chessboard complex;
that is, the matching complex of a complete bipartite r-multigraph.
Such a complex can be viewed as the simplicial complex of r-colored
rook placements on an m×n chessboard. An r-colored rook placement
is a placement of colored rooks on an m×n chessboard, such that each
row and each column gets at most one colored rook whose color is in [r].
Note that this complex is simply the the r-inflation of the chessboard
complex Mm,n. We therefore denote the complex by M r

m,n.
The multigraph version of the chessboard complex was introduced

by Garst [26] as a class of Tits coset complexes that generalizes the
chessboard complexes. Recall that the definition of Tits coset complex
given in Section 2 involves a group G and subgroups G1, . . . , Gm. Garst
sets G equal to the wreath product Sn oCr where Cr is the cyclic group
of order r. Elements of SnoCr can be viewed as “colored permutations”,
i.e., words w = w1w2 · · ·wn where for each i, the letter wi = (σi, ci) ∈
[n]× Cr and the σi are distinct. For each i = 1, 2, . . . ,m, set

Gi = {w ∈ Sn o Cr | wi = (i, e)},
where e is the identity of Cr. It is easy to see that ∆(G;G1, . . . , Gm)
is M r

m,n. Since Sn oC2 is the Weyl group Bn, the bicolored chessboard

complex M2
m,n can be viewed as a Bn-analogue of the chessboard com-

plex.



34 WACHS

Garst proves that M r
m,n is Cohen-Macaulay if and only if 2m−1 ≤ n.

He also generalizes Corollary 3.3 by decomposing the representation of
Sn oCr on the top homology of M r

m,n into irreducibles. The first result
turns out to be an immediate consequence of the fact that the inflation
of a Cohen-Macaulay simplicial complex is Cohen-Macaulay. This fact
follows from Theorem 8.3 and is proved in [7]. The second result is
generalized by Wachs [51] to arbitrary degree homology by using an
equivariant homology version of Theorem 8.3. We state this result just
for r = 2 below.

The direct product Bm×Bn acts on M2
m,n in the following way. Let

((a, b), c) be a vertex of M2
m,n, i.e., a placement of a rook of color c in

row a and column b, where a ∈ [m], b ∈ [n] and c = ±1. Let σ ∈ Sm,
τ ∈ Sn, ε ∈ {−1,+1}m and δ ∈ {−1,+1}n. We view (σ, ε) as an
element of Bm and (τ, δ) as an element of Bn. The action of Bm on
M2

m,n is given by letting (σ, ε) take ((a, b), c) to ((σ(a), b), εac) and the
action of Bn is given by letting (τ, δ) take ((a, b), c) to ((a, τ(b)), δbc).
These actions clearly commute and determine an action of Bm×Bn on
M2

m,n.

Recall that the irreducible representations S(λ,β) of Bn are indexed
by pairs of partitions (λ, β) such that |λ|+ |β| = n.

Theorem 8.6 (Wachs [51]). For p,m, n ∈ Z, where m,n ≥ 1, the
following (Bm ×Bn)-module isomorphism holds

H̃p−1(M2
m,n; k) ∼=Bm×Bn

⊕
β : |β| ≤ p

(λ, µ) ∈ R(m− |β|, n− |β|, p− |β|)

S(λ′,β′) ⊗ S(µ,β).

A matching complex version of this result is also given in [51]. A dif-
ferentBn-analogue of the matching complex is considered by Shareshian
(personal communication).

Theorem 8.3 and its equivariant homology version also provide chess-
board complex analogues of all the matching complex theorems of this
subsection. The analogue of Theorem 8.2 is a special case of Theo-
rem 8.13 below. It is also obtained by restricting the action of Bm×Bn

to Sm×Sn in the isomorphism of Theorem 8.6. We now state the ana-
logues of Theorems 8.4 and 8.5.

Theorem 8.7 (Wachs [51]). For m ≥ 2, n ≥ 3 and r ≥ 1,

M r
m,n '

m∨
i=0

Suspi(Mm−i,n−i)
∨a(m,n,r,i),

where a(m,n, r, i) = (r − 1)i
(
m
i

)(
n
i

)
i!.
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Theorem 8.8 (Wachs [51]). For 1 ≤ m ≤ n and 1 ≤ r, the connec-
tivity degree of M r

m,n is νm,n − 1. Moreover, if m+ n ≡ 1 mod 3 then

H̃νm,n(M r
m,n) = H̃νm,n(Mm,n)

and if m+ n ≡ 0, 2 mod 3 then

H̃νm,n(M r
m,n) = H̃νm,n(Mm,n)⊕ (r − 1)

(
m+ n

2

)
H̃νm−1,n−1(Mm−1,n−1).

A different type of directed graph matching complex is described in
a paper of Björner and Welker [10]. This is the complex of all directed
graphs on node set [n] for which the indegree and the outdegree of each
node is at most 1. If loops are allowed then this complex is simply the
chessboard complex Mn,n. If loops are not allowed then this complex
is the chessboard complex on an n× n board minus the diagonal. We
denote this complex by DMn.

Theorem 8.9 (Björner and Welker [10]). The connectivity degree of
DMn is at least ν2n − 1.

This is proved by applying a result of Ziegler [53] on shellability
of skeleta of nonrectangular shaped chessboard complexes. Integral
homology of DMn is computed for 2 ≤ n ≤ 7 in [10]. The bound
ν2n − 1 is sharp for these values and 3-torsion is the only torsion that
occurs.

Conjecture 8.10. The connectivity degree of DMn is ν2n−1.1 More-
over, there is some N such that H̃ν2n(DMn) is a nontrivial 3-group of
exponent 3 for all n ≥ N .

8.2. Bounded degree. For γ a partition of length n, let ∆D
γ denote

the complex of digraphs on node set [n] for which the total degree of
node i is at most γi for each i. Again loops are allowed and contribute
2 to the total degree of a node. Also two edges between a pair of
vertices which have opposite directions are allowed. The weight-space
technique of Karaguezian, Reiner and Wachs [31] described in Section 7
is used to obtain the following generalization of Theorem 8.1.

Theorem 8.11 (Wachs [51]). For p ∈ Z and any partition γ,

H̃p−1(∆D
γ ; k) ∼=Σ(γ)

⊕
λ = λ′

β ∈ B
|λ|+ |β| = |γ|
d(λ) = |γ| − 2p

Sλ⊗β(γ),

1See New Developments Section at the end of the paper.
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where B is the set of partitions of the form (α1 + 1, . . . , αd + 1 |
α1, . . . , αd) for some d.

For r, n ≥ 1, let Kr
n be the complete r-multigraph on node set [n].

(We require Kr
n to have r distinct loops at each node as well as r

distinct edges between each pair of nodes.) For any increasing n-tuple
of positive integers γ, let the bounded degree multigraph complex ∆r,γ be
the simplicial complex of submultigraphs of Kr

n such that the degree of
node i is at most γi for each i. (Again loops contribute 2 to the degree
of a node.) Note that ∆r,γ is not the r-inflation of ∆γ. Rather, the r-
inflation of ∆γ is simplicial complex of subgraphs (not submultigraphs)
of Kr

n with degree bounds γ. Also note that ∆2,γ is not the bounded
degree digraph complex ∆D

γ since only one loop is allowed at each node

in a digraph of ∆D
γ while two loops are allowed in a multigraph of ∆2,γ.

Again the weight-space technique of Karaguezian, Reiner and Wachs
is used to generalize Theorem 8.2 and (7.2).

Theorem 8.12 (Wachs [51]). For p, r ∈ Z, where r ≥ 1, and any
partition γ,

H̃p−1(∆r,γ ; k) ∼=Σ(γ)

⊕
λ = λ′

β ∈ B
|λ|+ |β| = |γ|
d(λ) = |γ| − 2p

(r − 1)|β|/2 Sλ⊗β
′
(γ)

Let r,m, n ≥ 1, γ be a partition of length m and δ be a partition of
length n. An r-colored (γ, δ)-rook placement is a placement of colored
rooks on an m× n chessboard, where row i gets at most γi rooks and
column j gets at most δj rooks and rooks placed in the same square
have distinct colors in [r]. Let ∆r,γ,δ be the complex of r-colored (γ, δ)-
rook placements. This complex can be viewed as a bounded degree
bipartite multigraph complex. When r = 2 the complex can be viewed
as a bounded degree directed bipartite graph complex. The following
analogue of Theorem 8.12 generalizes (7.3).

Theorem 8.13 (Wachs [51]). For p, r ∈ Z, where r ≥ 1, and parti-
tions γ and δ, the following Σ(γ)× Σ(δ)-module isomorphism holds

Hp−1(∆r,γ,δ; k) ∼=
⊕

β : |β| ≤ p
(λ, µ) ∈ R(|γ| − |β|, |δ| − |β|, p− |β|)

(r − 1)|β|Sλ
′⊗β′(γ)⊗ Sµ⊗β(δ).

8.3. Open problems.
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Problem 8.14. Can any of Dong’s homotopy results (Section 7) for
the bounded degree graph complexes be extended to multigraph com-
plexes?

Problem 8.15. Determine the connectivity degree and torsion for the
bounded degree digraph and multigraph complexes.

Problem 8.16. Decompose the representation of Sn on H̃p(DMn; k)
into irreducibles and determine the Betti numbers. Also determine the
connectivity degree1 and torsion for DMn, i.e., settle Conjecture 8.10.

Problem 8.17. Consider the bounded degree generalization of DMn.
This is the complex of all digraphs on node set n for which the indegree
of node i is bounded from above by γi and the outdegree of node i is
bounded by δi. If loops are allowed this is the same as ∆γ,δ. If loops
are not allowed this is the same as the complex of rook placements on
an n×n board minus the diagonal, in which there are at most γi rooks
in row i and at most δi rooks in column i. What can one say about
this complex?

9. Hypergraphs

Very few of the results of the previous sections have been generalized
to hypergraph complexes. We discuss the generalizations that have
been obtained in this section.

Let 2 ≤ r ≤ n. An r-hypergraph on node set [n] is a set of multisets
on [n] containing r elements (counting multiplicity). The multisets are
called edges. The degree of a node i is the total number of occurrences
of i in the edges of the hypergraph. For γ a partition of length n,
the γ-bounded degree r-hypergraph complex ∆γ(r) is defined to be the
simplicial complex of r-hypergraphs on [n] for which each node i has
degree at most γi. When r = 2, ∆γ(r) is the bounded degree graph
complex ∆γ.

When γ = 1n, ∆γ(r) is the r-hypergraph matching complex on node
set [n], which we denote by Mn(r). The r-hypergraph matching com-

plex was first studied by Björner, Lovász, Vrećica and Z̆ivaljević [6].
This is the Sn-simplicial complex whose faces are set partitions of sub-
sets of [n] into blocks of size r.

For t ≥ 2, i = 1, . . . , t and ni ≥ 1, let γ(i) = (γ
(i)
1 , . . . , γ

(i)
ni ) be a par-

tition of length ni and let γ = (γ(1), . . . , γ(t)). A γ-rook configuration
on an n1 × · · · × nt chessboard is a subset A of [n1] × · · · × [nt] such
that for i = 1, . . . , t, each j ∈ [ni] appears as the ith coordinate of at

1See New Developments Section at the end of the paper.
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most γ
(i)
j elements of A. The collection of γ-rook configurations on an

n1×· · ·×nt chessboard forms a simplicial complex ∆γ that we call the

γ-chessboard complex. When γ
(i)
j = 1 for all i and j ∈ [ni], the complex

∆γ is a chessboard complex on a t-dimensional board which we denote
by Mn1,...,nt . Note that ∆γ can be viewed as the simplicial complex of
all sub-t-hypergraphs of the complete t-partite t-hypergraph Kn1,...,nt

on node set [n1]] · · · ]∪[nt], in which each node j of part i has degree

at most γ
(i)
j .

Theorem 9.1 (Björner, Lovász, Vrećica and Z̆ivaljević [6]). For 2 ≤
r ≤ n, let νn(r) =

⌊
n−2
2r−1

⌋
. For t-tuple (n1, . . . , nt) of positive integers,

where t ≥ 2, let

νn1,...,nt = min

{
n′1 − 1,

⌊
n′1 + n′2 − 2

3

⌋
, . . . ,

⌊
n′1 + n′2 + · · ·+ n′t − t

2t− 1

⌋}
,

where (n′1, . . . , n
′
t) is a weakly increasing rearrangement of (n1, . . . , nt).

The connectivity degree of Mn(r) is at least νn(r) − 1 and the νn(r)-
skeleton of Mn(r) is homotopy Cohen-Macaulay. The connectivity de-
gree of Mn1,...,nt is at least νn1,...,nt − 1 and the νn1,...,nt-skeleton of
Mn1,...,nt is homotopy Cohen-Macaulay.

It is conjectured in [6] that the bounds in Theorem 9.1 are sharp and
that the respective skeleta are shellable. A recent result of Ksontini
[33] provides counterexamples to the bound for Mn(r). The smallest
counterexample is given by M11(3) which has connectivity degree 1
rather than ν11(3)− 1 = 0. Ksontini derives an improved bound which
is given in the following theorem.

Theorem 9.2 (Ksontini [33]). Let ν ′n(r) = bn+r−4
2r−1

c. If r is prime and
n ≥ 3r + 2 then the connectivity degree of Mn(r) is at least ν ′n(r)− 1.

Note that since ν ′n(2) = νn(2), by Theorem 5.2 Ksontini’s bound is
sharp for r = 2. Ksontini uses a relationship between Mn(r) and the
poset of elementary abelian r-subgroups of Sn to prove his result. It
is for this reason that r is required to be prime. It seems likely that
this condition is not necessary. The following result does not appear
in [33], but follows easily from Theorem 9.2.

Corollary 9.3. For r prime and n ≥ 3r + 2, the ν ′n(r)-skeleton of
Mn(r) is homotopy Cohen-Macaulay.

The weight space technique of Section 7 is used in [31] to lift the ra-
tional homology version of Theorem 9.1 to bounded degree hypergraph
complexes.
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Theorem 9.4 (Karaguezian, Reiner and Wachs [31]). The bounded de-
gree r-hypergraph complex ∆γ(r) is (ν|γ|(r)− 1)-acyclic over the ratio-
nals. The γ-chessboard complex ∆γ is (ν|γ(1)|,...,|γ(t)| − 1)-acyclic over
the rationals.

Corollary 9.5. The ν|γ|(r)-skeleton of the bounded degree r-hypergraph
complex ∆γ(r) is Cohen-Macaulay over the rationals. The ν|γ(1)|,...,|γ(t)|-
skeleton of the γ-chessboard complex ∆γ is Cohen-Macaulay over the
rationals.

The acyclicity bound for ∆γ(r) given in Theorem 9.4 can now be
improved because of Theorem 9.2.

Björner and Eriksson [5] generalize and unify connectivity results
for the matching complex and chessboard complex by introducing a
simplicial complex called a packing complex. Karaguezian, Reiner and
Wachs [31] introduce a bounded degree version of the packing complex
which yields a generalization and unification of the results of Theorem
9.4 and Corollary 9.5.

Much more is known about the top than the bottom nonvanishing
homology of the hypergraph matching complex.

Theorem 9.6 (Ksontini [Proposition 6.2] [33]). For 2 ≤ r < n, the
top nonvanishing integral homology of Mn(r) occurs in degree bn−1

r
c−1.

Remark 9.7. In [33] it is assumed that r is prime. However the result
is obtained in [41] without this assumption.

Theorem 9.6 is used in [33] to show that the degree of the top non-
vanishing homology of the Brown complex Sp(Sn) (the order complex
of the poset of nontrivial p-subgroups of Sn) and the Quillen com-
plex Ap(Sn) (the order complex of the poset of nontrivial elementary
abelian p-subgroups of Sn) is bn

p
c − 1 for all 3 ≤ p ≤ n− 1, except for

the case that p = 3 and n ≡ 0 mod 3. In this case the degree is n
3
− 2.

Shareshian and Wachs [41] derive an explicit formula expressing the
representation of the symmetric group on the top homology of Sp(Sn)
and Ap(Sn) in terms of the representations of the symmetric groups
on the top homology of the Mi(p). For p = 3, it is shown that these
Sn-modules are isomorphic to the top homology of Mn(p).

When r = 3 and n ≡ 1 mod 3, the representation of Sn on the top
homology has the following explicit decomposition into irreducibles.

Theorem 9.8 (Shareshian and Wachs [41]). For m ≥ 1,

H̃m−1(M3m+1(3); k) ∼=S3m+1

⊕
λ∈Ωm,3m+1

Sλ,
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where

Ωm,3m+1 = {(λ1 ≥ · · · ≥ λm ≥ 1) ` 3m+1 | λi is odd for all i = 1, . . . ,m}.
The proof of Theorem 9.8 involves symmetric function theory and a

long exact sequence of Ksontini [33].
Again the weight space technique [31, Theorem 4.3] can be used to

lift these results to the general bounded degree hypergraph complexes.

Corollary 9.9 (Shareshian and Wachs [41]). For r ≥ 2 and any par-
tition γ such that |γ| > r, the top nonvanishing homology of ∆γ(r) has

degree b |γ|−1
r
c − 1. When r = 3 and |γ| = 3m + 1 for some m ≥ 1, we

have
H̃m−1(∆γ(3); k) ∼=Σ(γ)

⊕
λ∈Ωm,3m+1

Sλ(γ).

9.1. Open problems.

Problem 9.10. Is Ksontini’s bound ν ′n(r)− 1 for the connectivity de-
gree of the hypergraph matching complex Mn(r) sharp?1 Find an ana-
logue of Ksontini’s bound for the multidimensional chessboard com-
plex.1 Do the same for the packing complex of Björner and Eriksson.
Find the connectivity degree of the bounded degree hypergraph com-
plexes.

Problem 9.11. Show that the ν ′n(r)-skeleton of Mn(r) is shellable.1

Do the same for the appropriate skeleton of the higher dimensional
chessboard complex.1. Show that the ν ′|γ|(r)-skeleton of ∆γ(r) is shellable
and show the analogous skeleton of the higher dimensional chessboard
complex is shellable.

Problem 9.12. Generalize the decomposition results of Section 3 and
the torsion results of Section 6 to hypergraph complexes.

Problem 9.13. Find chessboard complex analogues of Theorems 9.6
and 9.8.
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New developments

Since this paper was first circulated, a few of the problems posed
have been solved.

(1) Athanasiadis [1] has shown that the νn-skeleton of the matching
complex Mn is vertex decomposable (Problem 5.4). His vertex decom-
position generalizes to a vertex decomposition of the ν

′′
n(r)-skeleton

of the hypergraph matching complex Mn(r), where ν
′′
n(r) = bn−r

r+1
c.

Not only does this imply that the ν
′′
n(r)-skeleton (as well as the ν

′
n(r)-

skeleton) is shellable (Problem 9.11), it improves Ksontini’s bound for
the connectivity degree of Mn(r) to ν

′′
n(r)− 1 (Problem 9.10).

Athanasiadis also uses vertex decomposability to show that the t-
dimensional chessboard complexMn1,...,nt is (νn′1,n′2−1)-connected (Prob-

lem 9.10) improving the Björner-Lovász-Vrećica-Z̆ivaljević bound, and
that its νn′1,n′2-skeleton is shellable (Problem 9.11). He then uses The-
orem 5.2 to show that this connectivity bound is sharp.

Athanasiadis’ new connectivity bounds can be used to improve The-
orem 9.4 and Corollary 9.5.

(2) Shareshian and Wachs [40] have settled one of the conjectures in
Conjecture 8.10 (Problem 8.16). They have shown that H̃ν2n(DMn) 6=
0, thereby establishing sharpness of the Björner-Welker connectivity
bound. The idea is to view DMn as a subcomplex of the chessboard
complex Mn,n and show that every cycle in a certain generating set for

H̃νn,n(Mn,n), constructed in the proof of Theorem 6.3, can be realized

as a cycle of H̃ν2n(DMn).
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